Плотность алюминия в кг м3. Плотность и удельный вес меди – единицы измерения, расчет веса

В таблице представлены теплофизические свойства меди в зависимости от температуры в интервале от 50 до 1600 градусов Кельвина.

Плотность меди равна 8933 кг/м 3 (или 8,93 г/см 3) при комнатной температуре . Медь почти в четыре раза тяжелее и . Эти металлы будут плавать на поверхности жидкой меди. Значения плотности меди в таблице указаны в размерности кг/м 3 .

Зависимость плотности меди от ее температуры представлена в таблице. Следует отметить, что плотность меди при ее нагревании снижается как у твердого металла, так и у жидкой меди. Уменьшение значения плотности этого металла обусловлено его расширением при нагревании — объем меди увеличивается. Следует отметить, что жидкая медь имеет плотность около 8000 кг/м 3 при температурах до 1300°С.

Теплопроводность меди равна 401 Вт/(м·град) при комнатной температуре, что является довольно высоким значением , которое сравнимо с .

При 1357К (1084°С) медь переходит в жидкое состояние, что отражено в таблице резким падением значения коэффициента теплопроводности меди. Видно, что теплопроводность жидкой меди почти в два раза ниже, чем у твердого металла.

Теплопроводность меди при ее нагреве имеет тенденцию к снижению, однако при температуре выше 1400 К, значение теплопроводности снова начинает увеличиваться.

В таблице рассмотрены следующие теплофизические свойства меди при различных температурах:

  • плотность меди, кг/м 3 ;
  • удельная теплоемкость, Дж/(кг·град);
  • температуропроводность, м 2 /с;
  • теплопроводность меди, Вт/(м·К);
  • функция Лоренца;
  • отношение теплоемкостей.

Теплофизические свойства меди: КТР и удельная теплоемкость меди

Медь имеет сравнительно высокие теплоты плавления и кипения: удельная теплота плавления меди 213 кДж/кг; удельная теплота кипения меди 4800 кДж/кг.

В таблице ниже представлены некоторые теплофизические свойства меди в зависимости от температуры в интервале от 83 до 1473К. Значения свойств меди указаны при нормальном атмосферном давлении. Следует отметить, что удельная теплоемкость меди равна 381 Дж/(кг·град) при комнатной температуре, а теплопроводность меди равна 395 Вт/(м·град) при температуре 20°С.

Из значений коэффициента температурного расширения и теплоемкости меди в таблице видно, что нагрев этого металла приводит к росту этих величин. Например, теплоемкость меди при температуре 900°С становится равной 482 Дж/(кг·град).

В таблице даны следующие теплофизические свойства меди:

  • плотность меди, кг/м 3 ;
  • удельная теплоемкость меди, кДж/(кг·К);
  • коэффициент теплопроводности меди, Вт/(м·град);
  • удельное электрическое сопротивление, Ом·м;
  • линейный коэффициент теплового расширения (КТР), 1/град.

Источники:
1.
2. .

Расчет удельного веса меди

Как известно, за последние сотни лет прогресс шагнул достаточно далеко, что, в свою очередь, позволило развиваться многим отраслям промышленности по всему миру. Не осталось в стороне и металлургическое производство, так как наука подарила этой отрасли множество технологий, методик расчета и в том числе возможность измерения удельного веса металлов.

Поскольку различные медные сплавы различны по своему составу, а также по физическим и химически свойствам, это дает возможность для каждого изделия или детали подбирать необходимый сплав. Для расчета веса требуемого для производства проката, необходимо знать удельный вес соответствующей марки.

Формула для измерения удельного веса металла

Удельным весом называется отношение веса P однородного металла из определённого сплава к объёму этого сплава. Обозначается удельный вес символом γ и его ни в коем случае нельзя путать с плотностью. Хотя значения плотности и удельного веса как меди, так и других металлов очень часто одинаковы, стоит помнить, что это действительно не во всех условиях.

Таким образом, для расчета удельного веса меди используется формула γ=Р/V

А для расчета веса определенного размера медного проката, площадь его поперечного сечения умножается на удельный вес и на длину.

Единицы измерения удельного веса

Чтобы измерить удельный вес медных и других сплавов могут использоваться следующие еденицы измерения:

в системе СГС - 1 дин/см 3 ,

в системе СИ - 1 н/м 3 ,

в системе МКСС - 1 кГ/м 3 .

Данные единицы связаны между собой определённым соотношением, которое выглядит так:

0,1 дин/см 3 = 1 н/м3 = 0,102 кГ/м 3 .

Способы расчёт удельного веса меди

1. Использование специального на нашем сайте,

2. Расчёт при помощи формул, площади поперечного сечения проката, а затем умножение на удельный вес марки и на длинну.

Пример 1: расчитаем вес медных листов толщиной 4 мм, размером 1000х2000 мм в количестве 24 штуки из медного сплава М2

Посчитаем объем одного листа V = 4·1000·2000 = 8000000 мм 3 = 8000 см 3

Зная, что удельный вес 1 см 3 меди марки М3 = 8,94 гр/см 3

Посчитаем вес одного листа проката M = 8,94·8000 = 71520 гр = 71,52 кг

Итого масса всего проката М = 71,52·24 = 1716,48 кг

Пример 2: расчитаем вес медного прутка Д 32 мм общей длиной 100 метров из медно-никелевого сплава МНЖ5-1

Площадь сечения прутка диаметром 32 мм S=πR 2 значит S=3,1415·16 2 =803,84 мм 2 = 8,03 см 2

Определим вес всего проката, зная что удельный вес медно-никелевого сплава МНЖ5-1 = 8,7 гр/см 3

Итого М = 8,0384·8,7·10000=699340,80 грамм = 699,34 кг

Пример 3: расчитаем вес медного квадрата со стороной 20 мм длиной 7,4 метра из медного жаропрочного сплава БрНХК

Найдем объем проката V = 2·2·740 = 2960 см 3

Плотность меди (чистой), поверхность которой имеет красноватый, а в изломе розоватый оттенок, высока. Соответственно, этот металл обладает и значительным удельным весом. Благодаря своим уникальным свойствам, в первую очередь отличной электро- и , медь активно используется для производства элементов электронных и электрических систем, а также изделий другого назначения. Кроме чистой меди, большое значение для многих отраслей промышленности имеют и ее минералы. Несмотря на то что в природе таких минералов существует более 170-ти видов, активное применение нашли только 17 из них.

Значение плотности меди

Плотность данного металла, которую можно посмотреть в специальной таблице, имеет значение, равное 8,93*10 3 кг/м 3 . Также в таблице можно увидеть и другую, не менее важную, чем плотность, характеристику меди: ее удельный вес, который тоже равен 8,93, но измеряется в граммах на см 3 . Как видите, у меди значение этого параметра совпадает со значением плотности, но не стоит думать, что это характерно для всех металлов.

Плотность этого, да и любого другого металла, измеряемая в кг/м 3 , напрямую влияет на то, какой массой будут обладать изделия, изготовленные из данного материала. Но для определения массы будущего изделия, изготовленного из меди или из ее сплавов, к примеру, из латуни, удобнее пользоваться значением их удельного веса, а не плотности.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице - это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Единицы измерения удельного веса

Для выражения удельного веса меди в различных системах измерения используются различные единицы.

  • В системе СГС данный параметр измеряется в 1 дин/см 3 .
  • В системе СИ принята единица измерения 1н/м 3 .
  • В системе МКСС используется единица измерения 1 кГ/м 3 .

Если вы столкнулись с различными единицами измерения этого параметра меди или ее сплавов, то не представляет сложности перевести их друг в друга. Для этого можно использовать простую формулу перевода, которая выглядит следующим образом: 0,1 дин/см 3 = 1 н/м 3 = 0,102 кГ/м 3 .

Расчет веса с использованием значения удельного веса

Чтобы вычислить вес заготовки, нужно определить площадь ее поперечного сечения, а затем умножить его на длину детали и на удельный вес.

Пример 1:

Рассчитаем вес прутка из медно-никелевого сплава МНЖ5-1, диаметр которого составляет 30 миллиметров, а длина — 50 метров.

Площадь сечения вычислим по формуле S=πR 2 , следовательно: S = 3,1415 · 15 2 = 706,84 мм 2 = 7,068 см 2

Зная удельный вес медно-никелевого сплава МНЖ5-1, который равен 8,7 гр/см 3 , получим: М = 7,068 · 8,7 · 5000 = 307458 грамм = 307,458 кг

Пример 2

Вычислим вес 28-ми листов из медного сплава М2, толщина которых составляет 6 мм, а размеры 1500х2000 мм.

Объем одного листа составит: V = 6 · 1500 · 2000 = 18000000 мм 3 = 18000 см 3

Теперь, зная, что удельный вес 1 см 3 меди марки М3 равен 8,94 гр/см 3 , можем узнать вес одного листа: M = 8,94 · 18000 = 160920 гр = 160,92 кг

Масса всех 28-ми листов проката составит: М = 160,92 · 28 = 4505,76 кг

Пример 3:

Вычислим вес прута квадратного сечения из медного сплава БрНХК длиной 8 метров и размер стороны 30 мм.

Определим объем всего проката: V = 3 · 3 · 800 = 7200 см 3

Удельный вес указанного жаропрочного сплава равен 8,85 гр/см 3 , следовательно общий вес проката составит: М = 7200 · 8,85 = 63720 грамм = 63,72 кг

ОПРЕДЕЛЕНИЕ

В свободном виде алюминий представляет собой серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Алюминий характеризуется большой тягучестью и высокой электропроводностью, составляющей приблизительно 0,6 электропроводности меди. С этим связано его использование в производстве электрических проводов (которые при сечении, обеспечивающем равную электропроводность, вдвое легче медных). Важнейшие константы алюминия представлены в таблице ниже:

Таблица 1. Физические свойства и плотность алюминия.

Распространенность алюминия в природе

Краткое описание химических свойств и плотность алюминия

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

4Al + 3O 2 = 2Al 2 O 3 ;

2Al + 3F 2 = 2AlF 3 (t o = 600 o C);

2Al + 3Cl 2 = 2AlCl 3 ;

2Al + 2S = Al 2 S 3 (t o = 150 - 200 o C);

2Al + N 2 = 2AlN (t o = 800 - 1200 o C);

4Al + P 4 = 4AlPt o = 500 - 800 o C, в атмосфере H 2);

4Al + 3C = Al 4 C 3 (t o = 1500 - 1700 o C).

По отношению к воде алюминий практически вполне устойчив. Сильно разбавленные, а также очень концентрированные растворы азотной и серной кислот на алюминий почти не действуют, тогда как при средних концентрациях этих кислот он постепенно растворяется.

2Al + 6HCl = 2AlCl 3 + 3H 2 ;

8Al + 30HNO 3 = 8Al(NO 3) 3 + 3N 2 O + 15H 2 O.

По отношению к уксусной и ортофосфорной кислотам алюминий устойчив. Чистый металл довольно устойчив также и по отношению к соляной кислоте, но обычный технический в ней растворяется. Алюминий легко растворим в сильных щелочах:

2Al + 2NaOH + 6H 2 O = 3H 2 + 2Na.

Примеры решения задач

ПРИМЕР 1

Задание Вычислите плотность по водороду смеси 25 л азота и 175 л кислорода.
Решение Найдем объемные доли веществ в смеси:

j = V gas / V mixture_gas ;

j (N 2) = V(N 2) / V mixture_gas ;

j (N 2) = 25 / (25 + 175) = 25 / 200 = 0,125.

j (O) = V(O 2) / V mixture_gas ;

j (O 2) = 175 / (25 + 175) = 175 / 200 = 0,875.

Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = j (N 2) ×M r (N 2) + j (O 2) ×M r (O 2);

M r conditional (mixture) = 0,125 × 28 + 0,875 × 32 = 3,5 + 28 = 31,5.

Найдем относительную плотность смеси по водороду:

D H2 (mixture) = M r conditional (mixture) / M r (H 2);

D H 2 (mixture) = 31,5 / 2 = 15,75.

Ответ Плотность по водороду смеси, состоящей из азота и кислорода равна 15,75.

ПРИМЕР 2

Задание Рассчитайте плотности газов водорода H 2 и метана CH 4 по воздуху.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (H 2) = M r (H 2) / M r (air);

D air (H 2) = 2 / 29 = 0,0689.

M r (H 2) = 2 ×A r (H) = 2 × 1 = 2.

D air (CH 4) = M r (CH 4) / M r (air);

D air (CH 4) = 16 / 29 = 0,5517.

M r (CH 4) = A r (С) + 4 ×A r (H) = 12 + 4 × 1 = 12 + 4 = 16.

Ответ Плотности газов водорода H 2 и метана CH 4 по воздуху равны 0,5517 и 16 соответственно.

ОПРЕДЕЛЕНИЕ

Плотность вещества - это отношение его массы к объему:

M / V, [г/см 3 , кг/м 3 ]

Плотность твердого вещества - это справочная величина. Плотность меди равна 9,0 г/см 3 . В элементарном состоянии медь представляет собой металл красного цвета (рис.1). Её важнейшие константы представлены в таблице ниже:

Таблица 1. Физические свойства меди.

Медь характеризуется значительной плотностью, довольно высокой температурой плавления и малой твердостью. Её тягучесть и ковкость исключительно велика: медь можно вытянуть в проволоку диаметром в 0,001 мм (примерно в 50 раз тоньше человеческого волоса).

Рис. 1. Медь. Внешний вид.

Нахождение меди в природе

По распространенности в природе медь стоит далеко позади соответствующих щелочных металлов. Её содержание в земной коре оценивается величиной порядка 0,003% (масс.). Медь встречается главным образом в виде сернистых соединений и чаще совместно с сернистыми рудами других металлов. Из отдельных минералов меди наиболее важны халькопирит (CuFeS 2) и халькозин (Cu 2 S). Гораздо меньшее промышленное значение имеют кислородсодержащие минералы - куприт (Cu 2 O) и малахит ((CuOH) 2 CO 3).

Краткое описание химических свойств и плотность меди

Медь образует сплавы со многими металлами. В частности, она сплавляется с золотом, серебром и ртутью.

Химическая активность меди невелика. На воздухе она постоянно покрывается плотной зеленовато-серой пленкой основных углекислых солей. Соединяется с кислородом под обычным давлением и при нагревании:

4Cu + O 2 = 2CuO;

2Cu + O 2 = 2CuO.

Не реагирует с водородом, азотом и углеродом даже при высоких температурах.

При обычной температуре медь медленно соединяется с галогенами хлором, бромом и йодом:

Cu + Cl 2 = CuCl 2 ;

Cu + Br 2 = CuBr 2 .

Медь - слабый восстановитель; не реагирует с водой и разбавленной хлороводородной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода или цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», халькогенами и оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Примеры решения задач

ПРИМЕР 1

Задание При действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н.у.). Определить массовые доли металлов в смеси.
Решение Медь не реагирует с соляной кислотой, поскольку стоит в ряду активности металлов после водорода, т.е. выделение водорода происходит только в результате взаимодействия кислоты с железом.

Запишем уравнение реакции:

Fe + 2HCl = FeCl 2 + H 2 .

Найдем количество вещества водорода:

n(H 2) = V(H 2) /V_m = 5,6 / 22,4 = 0,25 моль.

Согласно уравнению реакции:

n(H 2) = n(Fe) = 0,25 моль.

Найдем массу железа:

m(Fe)=n(Fe) ×M(Fe) = 0,25 × 56 = 14 г.

Рассчитаем массовые доли металлов в смеси:

w (Fe) = m(Fe) / m mixture = 14 / 20 = 0,7 = 70%.

w(Cu) = 100% - w(Fe) =100 - 70 = 30%.

Ответ Массовая доля железа в сплаве составляет 70%, меди - 30%.